نمایش پست تنها
قدیمی 01-19-2013, 01:12   #5
jafar007
کاربر فعال
 
jafar007 آواتار ها
 
تاریخ عضویت: Jan 2013
نوشته ها: 291
تشکر: 0
تشکر شده 9 بار در 9 ارسال
پیش فرض


قضيه مجموعه توانی كانتور (2)
براي هر مجموعه X، قوت مجموعه تواني X بزرگتر از قوت مجموعه X است.
قضيه كانتور به ما مي گويد هر قدر هم كه مجموعه اي بزرگ باشد، باز هم مي توانيم مجموعه اي بزرگتر از آن را در نظر بگيريم. اين در مورد مجموعه هاي متناهي بديهي است، اما اگر مجموعه تحت بررسي نامتناهي باشد، چندان بديهي نيست.
دو مجموعه (و بويژه، دو مجموعه نامتناهي) را هم اندازه يعني داراي كارديناليته يكسان گوييم هرگاه بتوانيم تناظر يك به يكي ميان اعضاي دو مجموعه برقرار سازيم و در هيچ طرف هيچ عضوي باقي نماند. اگر بتوانيم نشان دهيم كه ميان دو مجموعه نامتناهي، هرگز نمي توان چنين “تناظر يك به يكي” برقرار ساخت، آن گاه مي دانيم يكي از مجموعه ها بايد به طور كاردينالي بزرگتر از مجموعه ديگر باشد.
كانتور براي اثبات اين قضيه از “برهان قطري سازي” خود كه اكنون مشهور است، استفاده كرد كه اثبات از طريق برهان خلف است. يعني فرض مي كنيم بزرگترين مجموعه نامتناهي وجود دارد و سپس نشان مي دهيم كه بايد يك مجموعه بازهم بزرگتر باشد. بنابراين، فرض كنيد X مجموعه اي نامتناهي است و آن را چنين نمايش مي دهيم:

X = {a, b, c, d, e, …}

براي نشان دادن اعضاي مجموعه ها از حروف استفاده مي كنيم و فرض مي كنيم كه تعدادي نامتناهي از اين اعضا وجود دارد. به ويژه فرض مي كنيم كه X بزرگترين اندازه مجموعه اي است كه وجود دارد- يعني هيچ مجموعه ديگري نمي تواند “نامتناهي بزرگتري” باشد. اكنون يادآوري مي كنيم كه هميشه مي توانيم مجموعه تواني X را كه با P(X) مايش داده مي شود با تشكيل مجموعه تمام زيرمجموعه هاي X تشكيل دهيم.

P(X) = { {a}, {a,b}, {b,c,e,}, {a,c}, {e},…}

مشاهده مي كنيم كه P(X) خود يك مجموعه است. و در خاطر نگه مي داريم كه براساس فرض نمي تواند بزرگتر از X باشد، زيرا ما فرض كرديم كه X به بزرگترين اندازه اي است كه يك مجموعه مي تواند باشد. اما بديهي است كه نمي تواند كوچكتر از X باشد، زيرا حاوي تمام زيرمجموعه هاي تكتايي X است، يعني به ازاي هر عضو a, b, c,… در X، داراي عضوي به شكل {a}، {b}، {c} و مانند آن است. در نتيجه اندازه اين دو مجموعه بايد مساوي باشد. يعني، بايد بتوانيم تناظر يك به يكي ميان اعضاي X و اعضاي P(X) برقرار كنيم به نحوي كه در هيچ طرف عضوي باقي نماند. چنين تناظري چيزي شبيه شكل زير است.

a <--> { c,d }
b <--> { a }
X c <--> { a,b,c,d } P(X)
d <--> { b,e }
e <--> { a,c,e }
........

توجه كنيد كه برخي اعضاي X با زيرمجموعه هايي متناظر شده اند كه حاوي خود آن ها هستند. مثلاً در اين جا، عضو e با زيرمجموعه {a,c,e} متناظر شده است. ديگر اعضا با زيرمجموعه هايي متناظر شده اند كه حاوي آن ها نيستند. مثلاً در اين جا عضو a با زيرمجموعه {c,d} متناظر شده است. مجموعه تمام اعضاي X را كه با زيرمجموعه هاي حاوي خود متناظر نشده اند در نظر بگيريد. اين مجموعه كه آن را مثلاً F مي ناميم، خود زيرمجموعه اي از X است، بنابراين بايد جايي در تناظر فوق پديدار شود.
اما آن عضو X كه با F متناظر است چه مي تواند باشد؟ نمي تواند عضوي از F باشد، زيرا F بويژه به نحوي ساخته شده است كه فقط حاوي آن اعضاي X باشد كه با مجموعه هايي كه حاوي آن ها هستند متناظر نباشند. از سوي ديگر، اگر عضو X كه متناظر با F است در Fقرار نداشته باشد … آن گاه خوب بايد در F قرار داشته باشد، بازهم بنابر تعريف F!
اين يك تناقض است و وجود اين تناقض نشان مي دهد كه هيچ عضو X را نمي توان با اين زيرمجموعه متناظر كرد. تناظر ما نمي تواند كامل باشد. و چون نمي توانيم ميان X و P(X) تناظر يك به يك برقرار سازيم و چون همان طور كه ديديم، P(X) نمي تواند كوچكتر از X باشد، تنها نتيجه ممكن اين است كه P(X)بزرگتر از X است. اين قضيه كانتور را كامل مي كند.
لحظه اي تأمل مي كنيم تا معناي قضيه كانتور را دريابيم. اين قضيه نشان مي دهد كه براي هر مجموعه اي، مجموعه ديگري وجود دارد كه به معناي خاص نوع بزرگتري از نامتناهي بودن، بزرگتر است. بنابراين، “بزرگترين نامتناهي” هم نمي تواند وجود داشته باشد! بنابراين، انواع نامتناهي، “نامتناهي” هستند!

__________________

البته ما به کسی در این دنیا درس نمی دهیم، اما خودمان هم حاضر نیستیم از شما "چشم آبی ها"، تنها بخاطر این که چشمهای خود ما "سیاه" است، درس بگیریم!
م.پ/پاسخ به تاریخ/۱۳۵۹
jafar007 آنلاین نیست.   پاسخ با نقل قول